
THE FUNDAMENTAL MIXED PROBLEM OF THE 
AXISYMMETRIC THEORY OF ELASTICITY 

(OSNOVNAIA SMESIIANNAIA ZADACIIA OSESIMMETRICHNOI 

TEORII UPRUGOSTI) 

PM/U Vol. 30, No. 5, 1966, pp. 956-962 

IU. I. SOLOV’FJ 
(Novosibirsk) 

(Received February 8, 1966) 

rina!ytic and p-aLalyric functions of a complex variable have been used in the solution of 
axisymmetri~ problems in the theory of elasticity (see, for example, [l to 51). In [6 and 71, 
the same results were accomplished by using generalized analytic functions which do not 
differ essentially from the functions introduced in [8]. 

In this manner, Fredholm integral equations were obtained for the first and second 
fundamental problems for simply as well as multiply connected bodies of revolution. 

The method given below deals with the fundamental mixed problem in which the applied 
forces are specified on one part of the boundary while the displacements are given on the 
other part. The singular integral equation which is obtained is analogous to the correspon- 
ding equation in the plane theory of elasticity [9 and la. This equation is then investiga- 
ted, and the existence of a solution is proved. 

1. Let D be a symmetric plane region representing the cross-section of a body of 
revolution, and let L be the boundary of this region consisting of simple, closed curves 
with no common points. Introduce a zor coordinate system in the plane of the axial cross- 
section, the z-axis coinciding with the axis of symmetry. The parts of D lying to the right 
and to the left of the z-axis (Fig. 11 will be designated by D’ and D”, respectively. The 

* +c., 
FIG. 1 

designations L ’ and Lx are assigned in a simi- 

lar manner. The interior contours L I and L r 
rj = 1, 2, . . . . m) do not intersect the axis of sym- 

metry. The remaining interior contours Lj (j = 
= m + 1, . . . . n) will be numbered from the bottom 
upwards in the order in which they intersect z. 

The outside contour L,, 1 contains within it all 

the remaining ones. Assume that the curvature of 
every contour satisfies the condition H (1). The 
positive direction on L is chosen so that the 
region D is on the left. The initial points on the 

Lj’ curves (j = m + 1, . . . . . . . n + 1) will be desig- 

nated by .zj and the final points by Xj’ (Fig. 11. 

All considerations presented herein are also 
applicable (with appropriate modifications) to 
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toroidal bodies (n = m and the contour L,, t 

andL” 

decomposes into two closed curves LA+ t 

,,+ t having no common points) as well as infinite regions with axisymmetric holes 

(the contour L,, t is then absent). 

As was shown in [ 6 , t I h e general solution of the axisymmetric problem may be 
written in the form 

-- 
2G (w + iu) = X’CD (t, t) - W(t, ?) - I (t, t) (1.1) 

Here, w and II are the axial and radial displacements of a point in the elastic body, G 

is the shear mod&s, %’ = 3.5-k; v is Poisson’s ratio, while @(t, 1) and ‘Y(t, 7) 

are generalized anaIytic functions of the arguments t = z + ir and t = E - ir, and satisfy 

differential equations of the form 

29 -&(@.-iS)=O (2+=$+i-&) 
(1.2) 

aa well as the condition 

CD (t, F)=G) (1.3) 

The symbol @‘(t, j) denotes the derivative in the sense of L. Bers with respect to the 

generating p8ir (1, i/t), and is numerically equal to a @/a~. 

In cylindrical coordinates, the stress components corresponding to the displacements 

in (1.1) are: 

o*f%+$ =Zfi+~)(@‘+@), a,+ar=2(@‘++)-2G(n/r) 

az+i7,,s=1,5fIf+@-tW- F 
(1.4) 

Let cd bs sn arbitrary, smooth curve in D’, and let pr and pr be the applied loads on 
the surface of revolution generated by revolving the above curve about the r-axis. Then 

-R+f 2=0.5tD((t.3)+ m)+ Y(It, ij-c- “‘:I” c- 

t 

-2(1-v) 
S[ 

2i Im 0 (tl, _il) - AC’ 
t1 - t1 I 

‘F Ly 
1 c 1 

(1.5) 

s R 

2 (s) = c Pz (4 r (a) ds1, R(s) = 24. (Sl) + __.-L 2 (4 
r2 (Sib 

a’ (“) dsl (1 6) --&-- I I 

ir 1 

Here, s is the running coordinate of the point t on the curve, measured from c, and C 
and C’ are real constants. 

In order to examine the conditions for single-valuedness and continuity of the stresses 
and displacements, we use the following representations: 

n tu 

@(t, i) = @* (t, j) + 2 A$@ (t, t; tj, 4) + 2 BiB (t, t; tj, tj) + 1 A 

j=l j=l t---t 

n m (1.7) 

Y&T)= Y*(t, T)-x’~ AjB(t, 2; tj,ij)+~‘~ BjZ(t, E tj; &)-LA 

j=l j-_-l t--t 

Here A, Ai and Bj are real constants, 9 are arbitrary fixed points inside the respec- 
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tive contours L/G = 1, 2, . . . m) and i,i (j = m + I, . . . n) and @* and % are generalized 
analytic functions, regular in II (i.e. the functions and their derivatives are single-valued 
and continuous). The functions 3 and 8 are logarithmic, satisfying Equation (1.2) and 
condition (1.3); in traversing a contour L * ’ i In a counterclockwise direction, 8 (t, i; tf, &) 

increases by 2$ while @ (t, E tj, ij ) increases by 2rr/( t - t ). For Im t > 0 and Im 9 >/ 0, 
these functions are given by 

H (6, q) = B (q) F (8, q’) -R (d F (8, 4) + g (q) Et6 4’) 

q= it--U-P- qi 
lt--tjI+ It-&j\ * 

q’= VW* 8 = cod1 [__$_ (~_l)“] (lm9) 
Here F(8, q’) andE(8, q’) are incomplete elliptic integrals of the first and second 

kind, respectively, with modulus q ’ , and K (q) and E (q) are complete elliptic integrals 
with modulus q. We confine ourselves to those branches of the fnnctions 3 and @ for whicrh 
8 = IT/~ if r = 0 aad z + 00, while 8 = - n/2 if r = 0 and I + - by. The branch cuts connect 
the points ti and $ for all j = 1 to m, intersecting the z-axis at tbe same point, which lies 
in D, above tba ISSt contour L,. aen j >/m + 1, we set t w $+ = zj and place the branch cut 
on the s-axis, along z < I.. 

2. Divide L ’ into nt’+ 1 segments 1; (O,< k < n ~ t, n&n), whose initial points are 

denoted by Ck. The points ck and & which are not on the axis of symmetry will be called 
nodes; the points where L intersects the z-axis cue not included amon 

$ 
the nodes. The 

number of nodes is 2p (p < n t). Let A, be the set of curve segments lk on which the 
external loads pi and p,. are specified, and let A, be the set of curve segments lk’ on whidh 
the displacements w and II are specified. On a given contour Lj segments belonging to At 
alternate witb segments belonging to AZ. For the present, we will assume that none of the 

contours L f belongs completely to A,. 
th 

Substituting (1.7) into (1.5) and (1.11, and letting t 
approach e boundary point bails’ (O<kQat)v we obtain 

j=I 

+ $ BjTj(zo) - 6 (zo) 5 

(2.1) 

2i lm @* (r, 3 
dz+d; 

j=l 
7 _ ; = -f (r&f c (zo) 

% 

Bere 

sj (zo) = 26 (To) ej - X’ (6j + Gj) + ?&‘j’ - 
1 

c Uj (TO) b (TO) - 
to-To 

Tj(zO) = 2b (70) Ej--x’ (Zj- ~j:j, + ~O~:i - b (70) 

s 

- _ 

2i Im E (z, t; tl, rj) 
dr+d;_ 

z _ i 

‘k 
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a (TO) = t (3 - 2%‘). b (to) = $ (1 -/m 2x7, 
2 

j (to) = RI, -{- _ 
trl - to 

Zk 

(2.3) 

b)“f&+ 
2(1 - v) 

- ci--2(1--v) 
to- to 

whereas, for T,E Ip’ E A, 
. . 

a@)= +*, b (to) - 0, j (TO) = 2G (w -t ill), c (to) = 0. (2.4) 

4 and Rk may be obtained from (1.6). where ok is the initial point in case z- 

an end point of lk’ 
I 
’ is not 

; if the opposite is true, xi’ is taken as the initial point in integrating 

(1.6) (in the negative direction). In general, the number of real constants Ck and C,’ 

equals p; Ck’ = 0 for c 

cj = In + 1, . . . 

urve segments adjoining the z-axis. Ui (70 ) equals unity if ck = xi 

a), and zero in all other cases. Under these conditions, the left- and right- 

hand sides of (2.1) are continuous over the interval of each curve lk’ (the branch crlts for 

@j and 3 i fJ = 1, 2, . . . . m) pass through one of the points c,& I+‘). 

Following the ideas of Sherman [9] , we will represent the regular part of (1.7) in the 
form of generalized Cauchy type integrals 

F (r) Wdr 

where the weight function F (7) satisfies (1.3), if’ is the generalized Cauchy kernal [61 , 

9 (r*T) is defined by the equations 

D (k) = & [R (4 - E &)I, kl = 

Then 

_-_-- 

(2.7) 

Here, Ip, = W(t, ?), and we have taken into account 
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Noting that the Sokhotskii-Plemelj formulas hold for generalized Cauchy type integrals, 

we let t approach 7,, in (2.5) and (2.7). Substituting the resultant expressions in (2.1), we 
obtain 

Uj= Im 
s 

F(r)Ir---tlds =-; F (r) (r - ?j pi(t) dr 
(2.8) 

L’j 

Here pj(r)=d?/ds for T&L~. andpj= 0 in all other cases. As a result, (2.1) be- 

comes a singular integral equation in F (7): 

b (~0) 
o (70) F (~0) + 7 

s 
W(zi,, r)F(t)dz + K(ro, t)F(z)&=-f(ro)+C tro) (2 9) . 

L 

~('O)Q(T~.T)+$ Sj(s)pj(r)-$; T3(To)(+--)Pj(x) 
(2.10) 

- 

j=1 j=l 

% 

Q (TO, r) = I [W(t, T)--W(t, ;)I s (6 %O E &‘) 

'k 
Here p (mu, 7) = 1 if 7 E ck 7o with ho E lk’, and fi (7u, 7) = 0 for other relative 

arrangements between To and 7. In differentiating with respect to T, it should be kept in 

mind that 5 is a function of 7 while To and ?o are constants. AIthough it wae assumed 

above that Im To>,O, it turns out that (2.9) holds for arbitrary 7o, provided that 

= (~0) = a (To), b (‘~0) = b (f,,, f (TV) = f (;,), C (TV) = c (to), ~(z,,r) = -K(;,, 

(2.11) 
The kernel K ( 7o, 7) is given by 

(2.12) 

where the continued product symbol extends over all nodes, N (7*, T) is a function of class 
H , and h is a number in the range 0 < X < 1, which can be made arbitrarily small. 

Note that Equation (2.9) may be transformed into an integral equation with the usual 
Cauchy kernel 

b (co) = (To) F (To) -I- - B F (z) dz + - fi KO(TO, r) +K(to, - 
ni 

z) F (z)dt = - f (to) + C (TO) t ? - ITO 3 
L 

(2.13) 
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ThekemelKu(~o,~)=b(~,) [s (T~,~)---~I (T--u)-tdoesnotcontributeany 

new singularities to (2.12) if none of the segments lk’ E A, adjoin the z-axis. However, 

if, for example, Zj 6 Ai,, 

the type const (T- zi)*‘. 

then, for T- = 70 = xi and T+.ZZ, this kernel has a singularity of 

3. Suppose f( 7) is of class H,, and df/d~is of class H*. We seek a solution F (7") 
to (2.9), belonging to class h,p (the terminology is that of [ II]). BY using the method of 

[ 101 together with certain additionai considerations, it can be shown that F (7) is of 
H, and the derivative dF/d~ is of class H *. It follows from this that the expressions in the 

right-hand sides of (1.1) and (1.5) extend continuously to all points of every segment li 
and the computations of section 2 are valid. 

Consider Equation (2.9) for f(s ) P 0. Let F,(T) be the solution of this equation, 

satisfying (1.3)‘ and let @c( t, 5) and Yc( t, ‘2) be the corresponding generalized analytic 

functions. It can be shown that the stresses obtained by substituting @o and Y, into (1.4) 
may be continuously extended to all points on the boundary L, except for the nodes. In 

the neighborhood of each node ck, their magnitudes do not exceed const 1 t - ckl’“( u < 1). 
Thus, the uniqueness theorem holds. Consequently 

Here y and yt are real constants. Substituting the expressions obtained for @ and Y? 
in,to (1.7) while tsking into acount that A = 0 and that a,* and % are regular, we obtain 

Y =Oand 

dj 3 0, 3j EC 0. (3.2) 
Utilization of (2.5), the second equation in (2.5) being modified via integration by 

parts, yields 

(3.3) 

1 y --_ - 
2ni s Fo (a) Wdz 

L 

1 x’r = 2ni s (I- X’)Fo(T)-- d T x Fo W) - 

If we now introduce the notation 

CD* (z, ;) = Fo (z) - r 
(3.4) 

'Y*(T,;)=(f -x’) F,(s)-+o(r) - a 

26 --zf 
--x'y 

it follows from (3.3) that Q+(S 5) and Y*(T, 7) are the boundary values of @*(t, ;) and 

Y*( t, ?), which are regular in the regions D i, D ‘;, D ‘2, D !$ . . . . 0;. D$ Oh+ t, .c., I&, 

D a+ t and vanish at infinity (the finite regions D.' and Di" j = 1, 2, . . . . m lie within the 

respective L! and LF; the regions Di [j = m + l,‘..., n 1 

the infinite legion Di+ 1 
are within the contours LA and 

lies outside the contour L,+ r). 
I' 

Eliminating F,(T) from (3.4), we obtain 

(1-~‘)~*(a,~~-~f*‘fr,2)-Y*(~,~~=s(1-Y)y (3.5) 

Here, @* ’ (7; ?)*represents the boundary value of @* ’ (t, 7). Application of Green’s 

theorem readily yields 

+ (1 - 2~) (Im (D*‘)z] rriedr (i -2 1, L’, I . . , II -+ 1) (3.6) 
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With the aid of (3.5). the left-hand side of (3.6) can be seen to vanish. Thus, 

@*‘(t, 7)~ 0, and 
(3.7) 

1 - It’ 
Y'* (t, t.,- --8(l -v)y C(1 -xx’) Q--,_TTj’, t E Dj 

Here yi and v ’ are real constants, and yi’ = 0 (j >, m + 1). 

From the conditions at infinity, it follows that 

Yn+l = 0, y=o (3.8) 

Substituting (3.7) and (3.8) into (3.4), we obtain 

(3.9) 

P J (r ) = yj (.tELj; j=m+1,...?& F,(T) = 0 (z E &+I! 

Now, utilization of (2.8) and (3.2) yields y. m 0 and y.’ m 0, whence 
I I 

F0 (.t) = 0, Ck = 0, Ch.‘ E 0 (3.10) 

In a similar manner it may be shown that the homogeneous equation (2.9) has no solu- 

tion other than the trivial one. Condition (1.3) on F (7) does not restrict generality, since, 

as a result of (2.11). the arbitrary solution of (2.9) may be written in the form Ft( 7) + iF, 

(T), where F1(~) and F2(7) satisfy (2.9) and (1.3). 

The remaining discussion of this section is based on the assumption that Noether’s 

theorems hold for Equation ‘(2.9) [or (2.13)] (‘f r no oint on the axis of symmetry belongs p 

to A,, then this is obvious, for in that case K, is a Fredholm kernel). 

The index of the class h,p of Equation (2.9) equals (- p). Hence, there exist p linearly 

independent solutions of class h, to the associated homogeneous equation 

a(~~)K(ro)+~Sb(~)~(r. rr~)K(r)dt+\K(~, c,)K(z)dt =0 (3.11) 

L i 

Without restricting generality, these solutions Ki (7) (j = 1, 2, . . . . p) may be taken to 

satisfy (1.3). 

Now the conditions for the existence of a solution to (2.9) take the form 

s 
tC(2)-_((t)lKj(r)dz=2iIm [C(z)-ff(z)lKjWdt=O (i=i,2,. . .p)(3.12) 

c 
L i, 

Hence, one may easily obtain a system of real, linear equations for the determination 

of the constants Ck and Ck’. Proceeding in a manner similar to [lo] and taking into 

account (3.1) to (3.10), we can show that the determinant of this system is nonzero. Conse- 
quently the posed problem has a real solution. 

4. Let us remove the restrictions placed on A1 in section 2. Let for example, the con- 

tour L,’ be entirely in A,. Then, for i = m, we write in place of (2.8) (cf. [7] ): 

(4.1) 
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cm=-He s F (T) ds, Cm' = - Im 
s 

F (t) 1 T - ; 1 ds 
L’nl L’m 

Both equations in (2.51 must be supplemented by terms 

b,e’(t. i; t,, t,) b,=Re (4.2) 

and x’ therein must be replaced by X, (z) = -0.5 for ‘FE L,’ -i- L,” while 

x1 (r) = x’ for the remaining parts of L. The resultant equation is of the form (2.9), with 

b (TV) = 0 for z&EL,’ -I- L,“. The existence of a solution is then readily shown in the 

same manner as in section 3. 

The indicated method may be extended to a case with several contours Lj’ E A1 

(some of which may adjoin the axis of symmetry). 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
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